Studies on the Mechanism of Action of Phenolic Disinfectants II

Patterns of Release of Radioactivity from Escherichia coli Labeled by Growth on Various Compounds

By JOSEPH JUDIS

Previous studies on the leakage of radioactivity from glutamate-C¹⁴ labeled Escher*icbia coli* cells in the presence of phenolic disinfectants were extended to involve cells labeled by growth on glucose-U-C¹⁴, acetate-C¹⁴, adenine-C¹⁴, sulfate-S³⁵, and phos-phate-P³². In general, the phenolic disinfectants considered caused varying amounts of radioactivity to be released from the labeled cells. The phenol derivatives did not cause leakage of significant amounts of radioactivity from heat-treated cells, and cells exposed to n-butanol (which breaks the osmotic barrier) did release additional radioactivity when treated with p-chloro-m-xylenol or phenol, but the total counts released under the experimental conditions did not exceed that with further butanol treatment. Cells labeled with P³², once treated with *p*-chloro-*m*-xylenol, continued to release radioactivity in saline buffer but glucose-Cl⁴-labeled cells did not. The amount of radioactivity released from variously labeled cells in the presence of phenol, p-chloro-m-xylenol, or n-butanol was affected by temperature.

N PREVIOUS studies (1), it was shown that Escherichia coli, when labeled by incubation with glutamate-C14, would lose radioactivity when exposed to phenolic disinfectants. This loss of radioactivity was proportional to the concentration of the phenol derivative and was caused by all of the phenols tested. It was assumed that the radioactivity lost could be due to extrusion of cell contents through a damaged cell membrane. This hypothesis was further investigated by studying the release of radioactivity in the presence of phenol derivatives from E. coli labeled by growth on a number of radioactive compounds.

METHODS AND MATERIALS

Materials .--- Only reagent grade chemicals were used and biochemicals were obtained from Nutritional Biochemicals Corp. or the California Corp. for Biochemical Research. The radioactive compounds were obtained either from the California Corp. for Biochemical Research, New England Nuclear Corp., or Abbott Laboratories. Thy labeled organic compounds had the following specule activities (mc./mmole): glucose-U-C14, 4; sodium acetate-1,2-C14, 10.5; adenine-8-C14, 14.4; sodium glutamate-3,4-C14, 2.3. Phosphorus32 was purchased as NaH₂PO₄ in solution with an activity of 10 μ c./5 ml., and sodium sulfate-S³⁵ was obtained with an activity of 50 μ c./5 ml. The organic compounds were dissolved in distilled water to give a concentration of 2 µc./ml. A number of the phenol derivatives were a gift of the Ottawa Chemical Co., Toledo, Ohio.

Labeling of Bacteria.-The procedure for labeling

Escherichia coli ATCC 11229 (the strain used throughout) with glutamate-C14 has been previously described (1). The synthetic medium (C) of Roberts, et al. (2), was used for growth as previously. Glucose-C14, sodium sulfate-S35, or sodium phosphate-P32 were added to the medium at the time of inoculation. In the case of P³², the total phosphate content of the medium was reduced to one-fourth of the usual to permit a greater uptake of P³². Approximately 1-2 µc. of glucose-C¹⁴ or sodium phosphate-P³², or 10-20 µc. of sodium sulfate-S³⁵ were added to 200 ml. of medium in a 500-ml. Erlenmeyer flask. The culture flasks were incubated on a Burrell wrist action shaker for 24 hours at 37° and harvested by centrifugation, followed by three washes with cold saline to remove any medium constituents. In the case of adenine-C¹⁴ and sodium acetate-C¹⁴, normally two flasks (200 ml. of medium per flask) were grown for 24 hours, as above, without the addition of the labeled compounds. The cells were harvested by centrifugation and resuspended in one flask of fresh medium containing 2 μ c. of radioactive acetate or adenine. The flask was shaken for an additional 3 hours at 37°, after which the cells were harvested and washed as above. During growth on labeled organic compounds, the flasks were attached to a U-tube containing soda lime to trap C14O2.

The washed, labeled cells were suspended in saline to give a concentration of 4×10^{10} cells/ml., as determined by turbidity readings previously calibrated with plate counts.

Measurement of Release of Radioactivity.-Basically, the previously described procedures (1) were used throughout. Phenol derivatives (except phenol) were dissolved in 25% v/v ethanol. Reaction mixtures contained, in a total volume of 3.0 ml., 2.4 \times 10¹⁰ cells, pH 7.2 phosphate buffer in a final concentration of 0.02 M, the phenol derivative in a volume of 0.5 ml. (or made up to 0.5 ml. with 25% v/v ethanol) and enough saline

Received March 29, 1962, from the College of Pharmacy,

Received March 29, 1962, from the College of Pharmacy, University of Toledo, Toledo 6, Ohio. Accepted for publication May 11, 1962. This work was supported in part by a grant from the University of Toledo Research Foundation.

to bring to volume. The reaction mixtures were incubated at $22 \pm 2^{\circ}$ for a total of 10 minutes and centrifuged for 20 minutes. Aliquots of the supernatant and the cells were dried on $1^{1}/_{4}$ inch, concentric ring stainless steel planchets, and radio-activity was assayed in a Nuclear-Chicago thin window gas flow counter.

In the experiments in which the amount of radioactivity released was measured at time intervals, a number of replicate reaction mixtures were prepared and removed at the indicated times for centrifugation (5 minutes at 14,000 r.p.m.).

RESULTS AND DISCUSSION

A bactericidal substance may act by a number of possible mechanisms which could be roughly categorized as either metabolic or physical-chemical (structural damage). Undoubtedly, a given substance may combine these mechanisms. In the case of phenolic disinfectants, there has been relatively little work on metabolic effects. Recently published data (1, 3-10) stress the effects of phenol derivatives on permeability mechanisms and suggest that damage to the latter are responsible ultimately for their killing effect. The results shown in Table I would tend to indicate that in the concentrations used, phenol derivatives do cause leakage of radioactivity from Escherichia coli labeled by growth on a number of compounds. The highest concentration used of each phenol derivative was adequate to cause at least 99% killing or more under the experimental conditions (1) except 2,4,6-trichlorophenol which caused 32% killing and 2,4-dichloro-m-xylenol, 97% killing.

Roberts, et al. (2), labeled E. coli by growth on a number of radioactive compounds (such as glucose, acetate, purines, sulfate-S³⁵, and phosphate P^{32}) and fractionated the cells to determine into which type of compounds the label was incorporated. For example, inorganic sulfate was incorporated primarily into protein; phosphate into nucleic acids primarily but also phospholipids and metabolic intermediates; acetate equally into lipids and protein; and glucose, primarily into protein but also nucleic acids, lipids, and some metabolic intermediates. It was hoped that if phenol derivatives would cause release of radioactivity from cells labeled by growth on specific compounds to a much greater degree than when labeled with other compounds, some insight might be obtained as to what the substrate, in general terms, might be for phenols.

The data in Table I would seem to suggest that phenol derivatives cause release of the highest per cent of radioactivity of cells labeled by growth on adenine-C14 or phosphate-P35, both of which are reported as being incorporated primarily into nucleic acids. Both DNA and RNA have been detected in isolated membranes (11, 12) although nucleic acids, nucleotides, and other phosphorus compounds could also originate from within the cell. Joswick (10) has reported the release of 260 mµ-absorbing substances (purines and pyrimidines) from bacteria in the presence of hexachlorophene, and the release of 260 mµ-absorbing substances is generally taken as an index of damage to the mechanisms which control permeability of the cell.

The substantial amounts of radioactivity released from cells labeled by growth on sulfate- S^{35} , which is incorporated primarily into protein, could also originate in the cell membrane which is known to contain considerable protein (13). Radioactivity from acetate- C^{14} cells, which is reported to be incorporated about equally into

Net^b Per Cent of Radioactivity Released from Cells Labeled by Growth on Glucose-C¹⁴ Acetate- Adenine-Glutamate-Na₃S³⁵O₄ NaH₂P³²O₄ Cit Treatment C14 C14 1.32.63.8 p-Chloro-m-xylenol 167 mcg./ml. 1.43.6 . . . 250 mcg./ml. 2.73.15.55.8 3.9 3.7 8.7 39.2 333 mcg./ml. 3.0 6.29.1 Phenol 3.3 mg./ml. 0.8 0.53.8 8.3 mg./ml. 4.0 3.53.110.1 54.33.7 12.7 6.16.3 12.5 mg./ml. 5.0p-Chloro-m-cresol 333 mcg./ml. 1.4 1.0 2.40.5 8.224.32.8 4.5 0.3 666 mcg./ml. 3.27.437.6 11.1 $1.\overline{2}$ 0.8 2.2 p-Chloro-o-cresol 333 mcg./ml. 6.9 11.8 666 mcg./ml. 2.64 5.14.4 12.326.22.4-Dichloro-m-xylenol 41.7 mcg./ml. 0.30.215.8 · **. .** 3.183 mcg./ml. 1.5. 2,4-Dichlorophenol 333 mcg./ml. 2.00.8 0.4 8.9 666 mcg./ml. 3.31.1 4.129.0. 0.3 2,4,6-Trichlorophenol 167 mcg./ml. 0 . . . • • • . . . 0.1 333 mcg./ml. 0.614.0 Hyamine 3500, c 1:500 50.014.724.88.2 7.41:1000 $7.2 \\ 17.2$ •.• • n-Butanol, 5% v/v 8.7 13.910.41.6. . . Heated in boiling water bath for 5 min. 8.4 9.1 18.314.2• • Saline-buffer control 1.9 1.52.50.9 5.74.9 2.9 Ethanol (4.2% v/v)-buffer control 2.21.8 1.1 5.621.9

 TABLE I.—Release of Radioactivity from Labeled Escherichia coli^a in the Presence of Various Phenolic Disinfectants

^a The cell concentrations in the reaction mixtures were 8×10^{9} cells/ml., with the exception of the cells labeled with glutamate-Ct⁴ which was 3.8×10^{9} cells/ml. The labeled cells had approximately the following activities (c.p.m./10⁹ cells): glucose-Ct⁴, 300; acetate-Ct⁴, 300; adenine-Ct⁴, 2600; sulfate-St⁵, 1500; phosphate-Pt³, 40 to 186; glutanuate-Ct⁴, 520. ^b The radioactivity released in the appropriate control (ethanol-buffer for phenolic disinfectants except phenol and salinebuffer for others) was subtracted to obtain the net leakage. ^c Alkyl (C₁₂-C₁₆) dimethyl benzyl ammonium chloride, Rohm and Haas Co., Philadelphia, Pa. lipids and proteins (2) of *E. coli*, is also released. The greatest release was found with glutamate- C^{14} -labeled cells and, although it is not clear as to what the glutamate is incorporated into, it is rapidly incorporated into nondiffusible compounds (2) and would not be simply adsorbed to the cells. While it cannot be said that the data in Table I indicate damage to the cell membrane as the basis for the lethal action of phenols, they are compatible with this hypothesis.

It would seem that the source of the radioactivity released from labeled cells must be due either to weakening or destruction of the permeability barrier of the cell, or "uncoupling" of protoplasmic constituents, or a combination of the two. If phenolic disinfectants act by affecting the permeability barriers, they should not cause release of additional radioactivity from cells whose permeability barrier has been destroyed. This can be accomplished by heat ing the cells, which causes a rapid release of the cellular pool and a certain amount of cytoplasmic degradation (14), or treatment with *n*-butanol, which breaks the osmotic barrier (15).

In Tables II, III, and IV, it can be seen that neither phenol, *p*-chloro-*m*-xylenol (PCMX), or but anol caused significant additional release of radioactivity from heated cells, thus indicating little or no additional cytoplasmic degradation. These results are in agreement with Beckett, *et al.* (14), who studied the release of 260 m μ -absorbing exudate in heattreated *E. coli*, followed by hexylresorcinol. When labeled cells were first treated with butanol, and then retreated with phenol, *p*-chloro-*m*-xylenol, or butanol, the total counts released never exceeded that obtained with butanol, although the rate of release varied. Beckett, *et al.* (14), concluded from their data that hexylresorcinol caused extensive intracellular uncoupling because much more exudate was released from *E. coli* after preliminary treatment with butanol (which broke the osmotic barrier) than without preliminary treatment of the cells. The data in Tables II, III, and IV seem to be more compatible with the contention that the phenol derivatives considered, like butanol, act by breaking the permeability barrier.

It is interesting to speculate as to whether the alleged damage caused to the cell membrane is quantitatively related to the amount of phenol derivative to which the cell is exposed or whether the effect is such that once small damages are caused, they rapidly enlarge and leakage proceeds continuously. Experimentally, this was approached by treating cells with p-chloro-m-xylenol, and then exposing these cells to either saline-buffer, butanol, or additional treatments with p-chloro-m-xylenol. The results obtained are given in Tables V and VI. It would seem that phosphate-P³²-labeled cells continued to release some radioactivity once treated with p-chloro-m-xylenol, and additional exposure to the latter did not markedly affect the release of

 TABLE II.—ABILITY OF PHENOL AND p-CHLORO-m-XYLENOL TO CAUSE RELEASE OF RADIOACTIVITY FROM HEATED OR n-BUTANOL-TREATED Escherichia coli^a LABELED BY GROWTH ON SULFATE-S³⁵

		Original	Radio	activity I —Extract	Released, ion No	c.p.m.	Radio- activity Left in Cells,
Original Treatment of Cells ^a	Extraction Medium	Treatment	1	2	3	Total	c.p.m.
Heated in boiling water	Phenol $(12.5 \text{ mg}./\text{ml}.)$	4155	126	63	45	4389	15,292
bath for 5 min.	PCMX (333 mcg./ml.)	4329	105	57	36	4527	15,292
	<i>n</i> -Butanol $(5\% \text{ v/v})$ Ethanol $(4.2\% \text{ v/v})$ -	4173	153	66	66	4458	14,683
	buffer	4233	141	27	33	4434	15,042
	Saline-buffer	4188	146	45	33	4412	14,556
<i>n</i> -Butanol (5% v/v)	Phenol (12.5 mg./ml.) PCMX (333 mcg /ml.)	885 1272	1773 966	966 765	444 720	4068 3723	16,983 18 144
	<i>n</i> -Butanol $(5\% \text{ v/v})$ Ethanol $(4.2\% \text{ v/v})$ -	1012	1257	822	996	4087	17,795
	buffer	1215	852	438	396	2901	18.163
	Saline-buffer	1737	$12\bar{1}5$	597	423	3972	17,508

^a The cells had an activity of 1182 c.p.m./10⁹ cells.

TABLE III.—ABILITY OF PHENOL AND p-CHLORO-m-XYLENOL TO CAUSE RELEASE OF RADIOACTIVITY FROM HEATED OR n-BUTANOL-TREATED Escherichia coli^a Cells LABELED by GROWTH ON ADENINE-C¹⁴

		Original	Radi	ioactivit	y Released	, c.p.m.	Radio- activity Left
Original Treatment of Cells	Extraction Medium	Treatment	1	2	3	Total	c.p.m.
Heated in boiling water bath for 5 min.	Phenol (12.5 mg./ml.) PCMX (333 mcg./ml.)	$16,708 \\ 17,737$	$\begin{array}{c} 435\\ 434 \end{array}$	$314 \\ 185$	$\begin{array}{c} 165 \\ 195 \end{array}$	$17,622 \\ 18,551$	$20,491 \\ 20,491$
	<i>n</i> -Butanol $(5\% \text{ v/v})$ Ethanol $(4.2\% \text{ v/v})$ -	16,523	434	206	178	17,341	19,675
	buffer Saline-buffer	$15,686 \\ 17,515$	435 399	100 103	101 147	$16,322 \\ 18,163$	$20,156 \\ 19,505$
n-Butanol (5% v/v)	Phenol (12.5 mg./ml.) PCMX (333 mcg./ml.) <i>n</i> -Butanol (5% v/v) Ethanol (4.2% v/v)-	8,473 8,599 8,422	3437 2023 1971	8849 3226 4299	374 2,285 10,235	21,133 16,133 24,928	22,757 24,313 23,845
	buffer Saline-buffer	8,086 7,694	1742 1964	1461 4515	$3,016 \\ 6,101$	$14,305 \\ 20,279$	$\begin{array}{c} 24, 338\\ 23, 461\\ \end{array}$

^a The cells had an activity of 2049 c.p.m./10⁹ cells.

radioactivity. However, glucose-C¹⁴-labeled, pcbloro-m-xylenol-treated cells did not release additional radioactivity when extracted with salinebuffer or ethanol-buffer. Also additional treatment with p-chloro-m-xylenol did not cause release of much additional radioactivity.

It is generally assumed that the antimicrobial activity of phenol increases with temperature (16, 17) and one would presume that phenomena associated with killing of bacteria by phenol derivatives should respond similarly. Table VII presents the per cent of radioactivity released from variously labeled cells in the presence of phenol, p-chloro-*m*-xylenol, and *n*-butanol at three temperatures. In general, an increase in temperature caused an increase in release of radioactivity. The only exception occurred with sulfate-S³⁵-labeled cells. It

would seem that the latter observation coupled with the low release of radioactivity caused in sulfate-S³⁵-labeled cells by butanol would suggest an origin of the radioactivity which might be different from that obtained from cells labeled in other ways. Perhaps the fact that phenol derivatives cause the release of more counts from sulfate-S³⁵-labeled cells than butanol may indicate that some of the counts are coming from surface layers rather than low molecular weight compounds which would be released simply by breaking the osmotic barrier. Joswick (10) described a biphasic release of cell exudate caused by hexachlorophene which is also known to occur with other surface-active detergents (18) and polymyxin (19). He considers the leakage at 0° to be related to membrane damage, and at higher temperatures to be related to autolysis.

TABLE IV.—ABILITY OF PHENOL AND p-CHLORO-m-XYLENOL TO CAUSE RELEASE OF RADIOACTIVITY FROM HEATED OR n-BUTANOL-TREATED Escherichia coli Cells^a Labeled by Growth on Glucose-C¹⁴

		Original Treat-	Radio	activity] Extract	Radio- activity Left in Cells		
Original Treatment of Cells	Extraction Medium	ment	1	2	3	Total	c.p.m.
Heated in boiling water	Phenol $(12.5 \text{ mg}./\text{ml}.)$	877	66	31	71	1045	6512
bath for 5 min.	PCMX (333 mcg./ml.)	856	46	22	17	940	5773
	<i>n</i> -Butanol $(5\% \text{ v/v})$ Ethanol $(4.2\% \text{ v/v})$ -	785	53	40	31	908	5372
	buffer	899	40	23	25	987	5597
	Saline-buffer	936	59	18	30	1043	7170
<i>n</i> -Butanol (5% v/v)	Phenol (12.5 mg./ml.)	623	409	189	37	1258	6027
() • • • •	PCMX (333 mcg./ml.)	634	352	270	92	1348	6059
	<i>n</i> -Butanol (5% v/v) Ethanol (4.2% v/v)-	491	509	282	79	1361	6378
	buffer	572	292	197	58	1118	7310
	Saline-buffer	555	236	253	47	1091	6490

^a The cells had an activity of 390 c.p.m./10⁹ cells.

TABLE V.—EFFECT OF RE-EXPOSURE TO p-CHLORO-m-XYLENOL ON RELEASE OF RADIOACTIVITY FROM Escherichia coli^o LABELED BY GROWTH ON PHOSPHATE-P³²

Original Treatment of Cells	Extraction Medium	Original Treat- ment	Radio	activity —Extrac 2	Released ton No 3	, c.p.m. Total	Radio- activity Left in Cells c.p.m.
PCMX, 333 mcg./ml.	Saline-buffer	294	424	293	167	1178	1183
	Ethanol $(4.2\% \text{ v/v})$ -	-0-					
	buffer	276	276	179	183	914	1306
	PCMX (333 mcg./ml.)	258	385	349	140	1132	1183
	<i>n</i> -Butanol $(5\% \text{ v/v})$	274	340	431	204	1249	1034
Ethanol (4.2% v/v)-	Ethanol (4.2% v/v)-	100	100			100	1=0/
control	buffer	166	122	69	47	403	1794

^a The cells had an activity of 117 c.p.m./10⁹ cells.

TABLE VI.—ABILITY OF *p*-Chloro-*m*-XYLENOL AND *n*-BUTANOL TO CAUSE RELEASE OF RADIOACTIVITY FROM *p*-Chloro-*m*-XYLENOL-TREATED Escherichia coli^a LABELED BY GROWTH ON GLUCOSE-C¹⁴

Original Treat-	Radio	activity —Extrac	Radio- activity Left in Cells		
lium ment	1	2	3	Total	c.p.m.
423 v/v)-	104	46	46	619	7818
405	85	53	65	608	8046
eg./ml.) 425 v/v) 436	$\begin{array}{c} 140 \\ 224 \end{array}$	131 75	$\begin{array}{c} 162 \\ 65 \end{array}$	858 800	7499 7118
225 v/v)-	84	36	42	387	7866
204	84	51	64	403	7953
eg./ml.) 243 v/v) 207	$\begin{array}{c} 290\\ 332 \end{array}$	110 107	$\begin{array}{c} 141 \\ 107 \end{array}$	784 753	7690 7370
	Original Treat- ment jium Treat- ment 423 425 v/v) 405 sg./ml.) 425 v/v) 225 v/v)- 204 cg./ml.) 243 v/v) 207	Original Treat- ment Radio 1 jium Treat- 423 104 v/v)- 405 85 gg./ml.) 425 140 v/v) 436 224 v/v)- 204 84 cg./ml.) 243 290 v/v) 207 332	$\begin{array}{c ccccc} & & & & & \\ & & & & \\ \text{ium} & & & & \\ & & & & \\ \text{ium} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a The cells had an activity of 368 c.p.m./10⁹ cells.

However, in the experiment for which results are presented in Table VII, insufficient time would have elapsed for significant autolysis.

Figures 1 and 2 indicate the rates of release of radioactivity from either phosphate-P³² or sulfate-S³⁵-labeled cells in constant contact with *p*-chloro-*m*-xylenol. The difference in the shapes of these two curves also suggest the mechanism of release and/or the origin or identity of the radioactive compounds released may be different. The control curves indicate a greater tendency for leakage after 1 to 2 hours, of P³²-labeled compounds than of S³⁵-labeled compounds.

In general, the observations presented above and others would suggest that phenols exert their lethal action by physical damage to the permeability barriers. It is quite reasonable to expect that a relatively minor amount of physical damage, such as alteration in permeability without lysis, could be lethal. For example, Strauss (20) reported the formation of a lethal permeability defect in E. coli by a mutagenic alkylating agent, ethyl sulfate. On the other hand, Nathan (21) described a permeability change in Lactobacillus plantarum caused by chlorpromazine which was nonlethal. It must still be recognized that evidence regarding permeability damage and lethal effects of phenols is circumstantial and, as has been shown by Stedman, et al. (22), and Kravitz, et al. (23), the total effect of a germicide (a quaternary ammonium compound in their studies) may involve, to different extents, leakage of cellular materials and inhibition of energy yielding reactions. The contribution of each of these effects may depend upon a number of conditions, and varying the latter will vary the influence of a given effect. There are a number of additional approaches to examining the mechanism of the lethal effects of phenolic disinfectants, such as determining the cytological site of uptake of these compounds. If the cell membrane is the site of action of phenolic disinfectants, one should be able to assume that the latter would be bound to the membrane and concentrate there, at least until the integrity of the latter is destroyed and the germicide penetrates into the cell. It would be useful to determine the relative distribution of labeled phenolic disinfectants in the usual fractions obtained in cell fractionation, or even better, among the basic structural fractions, such as the cell wall, cell membrane, and cytoplasm. Beckett, *et al.* (4, 5), have already shown that cell walls from *E. coli* do not bind hexylresorcinol although the whole cell does.

More precise knowledge of the identity of the substances which leak from the cell would be useful for determining to what extent phenol derivatives

Fig. 1.—Release of radioactivity from *Escherichia* coli labeled by growth on phosphate-P³². The activity of the cells was 116 c.p.m./10⁹ cells. A, Cells exposed to 333 mcg./ml. of *p*-chloro-*m*-xylenol; B, saline-buffer control; C, ethanol (4.2% v/v)-buffer control.

Treatment	Tempera- ture, °C.	-Radioactivity Glucose-C ¹⁴	Released from Adenine-C ¹⁴	Cells Labeled by Na ₂ S ³⁵ O ₄	y Growth, %- NaH ₂ P ³² O ₄
Phenol, 12.5 mg./ml.	0	2.3	4.4	3.8	6.5
	22	4.8	14.6	11.0	18.4
	40	7.6	48.0	7.6	
PCMX, 333 mcg./ml.	0	2.2	6.8	5.9	8.9
	22	3.5	7.0	7.1	17.9
	40	4.4	43.2	7.6	
<i>n</i> -Butanol. 5% v/v	0	2.0	4.2	3.6	
	22	6.6	8.2	14.2	
	40	8.4	49.1	9.4	
Ethanol $(4.2\% \text{ v/v})$ -buffer control	0		2.3		4.9
	$2\overline{2}$		3.1		5.6
	40		7.9	• • •	
Saline-buffer control	0	0.7	2 1	0.7	2.5
	22	1.4	2.7	2.1	5.6
	40	1.9	5.8	1.6	

TABLE VII.—EFFECT OF TEMPERATURE ON PHENOL, p-CHLORO-m-XYLENOL, AND n-BUTANOL-CAUSED RELEASE OF RADIOACTIVITY FROM LABELED Escherichia coli Cells^a

^a The labeled cells had approximately the following activities, c.p.m./10⁹ cells: glucose-C¹⁴, 269; adenine-C¹⁴, 2656; sulfate-S³⁸, 1892; and phosphate-P³⁵, 40.

Fig. 2.-Release of radioactivity from Escherichia *coli* labeled by growth on sulfate-S*. The cells had an activity of 1650 c.p.m./10⁹ cells. A, Cells exposed to 333 mcg./ml. of p-chloro-m-xylenol; B, saline-buffer control; C, ethanol (4.2% v/v)buffer control.

cause cytoplasmic degradation following membrane disruption. Bean and Walters (24) have shown that benzylchlorophenol-induced cell exudate from E. coli influenced survival in a bactericidal system and interpreted their data to indicate that the last survivors utilize the released cell constituents as nutrients. Also to be explored are the effects on metabolism of the germicidal derivatives of phenol, and even more challenging, the biochemical and biophysical basis for the relative nontoxicity to animals (25) of certain potent phenolic disinfectants such as p-chloro-m-xylenol and 2,4-dichloro-m-xylenol.

REFERENCES

Judis, J., THIS JOURNAL, **51**, 261(1962).
 Roberts, R. B., Cowie, D. B., Abelson, P. H., Bolton, E. T., and Britten, R. J., "Studies of Biosynthesis in Escher-ichia coli," Carnegie Institution of Washington, Publication 607, Washington, D. C., 1955.
 Beckett, A. H., Patki, S. J., and Robinson, A. E., J. Pharm. Pharmacol., **11**, 421(1959).
 Beckett, A. H., Patki, S. J., and Robinson, A. E., J. Pharm. Pharmacol., **11**, 421(1959).
 Beckett, A. H., Patki, S. J., and Robinson, A. E., J. Pharm. Pharmacol., **11**, 360(1959).
 Maurice, P. Froc. Soc. Appl. Bacteriol., **15**, 144 (1952).
 Havdon, D. A., Proc. Rov. Soc. London Ser. B., **145**.

- (7) Haydon, D. A., Proc. Roy. Soc. London Ser. B., 145, 383(1956).
- (8) Tomcsik, J., Proc. Soc. Exptl. Biol. Med., 89, 459 (1955).
- (9) Joswick, H. L., and Gerhardt, P., Bacteriol. Proc., 1960, 100.
- (10) Joswick, H. L., "Mode of Action of Hexachlorophene,"
 Ph.D. thesis, University of Michigan, Ann Arbor, 1961.
 (11) Vennes, J. W., and Gerhardt, P., Science, 124, 535
- (11) Vennes, J. W., and Gerhardt, P., Science, 124, 555
 (1256).
 (12) Weibull, C., and Bergstrom, L., Biochim. Biophys. Acta, 30, 340 (1958).
 (13) Salton, M. R. J., Bacteriol. Rev., 25, 77 (1961).
 (14) Beckett, A. H., Patki, S. J., and Robinson, A. E., J. Pharm. Pharmacol., 11, 367 (1959).
 (15) Pethica, B. A., J. Gen. Microbiol., 18, 473 (1958).
 (16) Bennett, E. O., Advan. Appl. Microbiol., 1, 123 (1959).
 (17) Sykes, G., "Disinfection and Sterilization," D. Van Nostrand Co., Inc., Princeton, N. J., 1958.
 (18) Hotchkiss, R. D., Ann. N. Y. Acad. Sci., 46, 479 (1946).

- (1946)
- (1946).
 (19) Newton, B. A., J. Gen. Microbiol., 9, 54(1953).
 (20) Strauss, B. S., J. Bacteriol., 81, 573(1961).
 (21) Nathan, H. A., Noture, 192, 471(1961).
 (22) Stedman, R. L., Kravitz, E., and King, J. D., J.
 Bacteriol., 73, 655(1957)
 (23) Kravitz, E., Stedman, R. L., Anmuth, M., and
 Harding, J., Am. J., Pharm., 130, 301(1958).
 (24) Bean, H. S., and Walters, V., J. Pharm. Pharmacol..
 13, Suppl., 1837(1961).
 (25) Joseph, J. M., THIS JOURNAL, 41, 595(1952).